Material Properties of AlInGaN Alloys
Here we suggest for you attention our database of material properties for AlInGaN alloys. The material properties presented below are used in the software package SimuLED, the engineering tool for LED and laser diode design and optimization. The section will be gradually expanding and eventually is going to cover the following subjects:
- Lattice Constants
- Elastic Constants
- Piezoelectric Tensor, Spontaneous Polarization, and Dielectric Constant
- Energy Gap and Valence Band Splitting
- Band Offsets and Electron Affinity
- Effective Masses of Electrons and Holes
- Ionization Energies of Impurities
- Frequency-dependent dielectric constant
If you have any questions regarding software for LED and laser diode design and optimization or would like to contribute to this database, please, contact us at mark.ramm@str-soft.com
Generally, these materials can be divided into two types:
- materials of fixed chemical composition and structural modification (GaN, AlN, etc.);
- alloys (AlInGaN, MgZnO, etc.).
![]() | , (1) |
where xi are the species concentrations satisfying the relation
![]() | , (2) |
fi are the values of the property f for pure materials, and fik are the bowing parameters. One can use zero bowing parameters to describe linear variation of the property f with the alloy composition, so called Vegard law.
By default all properties except for the energy gap and electron affinity are assumed to have a linear dependence on the composition. In this section we discuss the data on materials properties available in literature in order to justify the choice of the parameters used. The data obtained for binary nitrides and the approximations applied for evaluation of the parameters of multi-component nitride compounds are both discussed.
Lattice constants of the multi-component nitride compounds are assumed to obey the Vegard law. The data on the lattice constants of binary nitrides are collected in Table 1. It is seen that the experimental data [1] - [3] agree well with each other. The ab initio calculations [4] provide underestimated constants. Therefore, the most reliable data are a = 0.3540 nm, a = 0.3188 nm, a = 0.3112 nm, c = 0.5705 nm, c = 0.5186 nm, and c = 0.4982 nm (the chosen values are shadowed in Table 1).
Ref. | a(nm) | c(nm) | ||||
AlN | GaN | InN | AlN | GaN | InN | |
[1] | 0.3111 | 0.3182 | 0.3540 | 0.4980 | 0.5185 | 0.5705 |
[2] | 0.3112 | 0.3189 | 0.3540 | 0.4982 | 0.5185 | 0.5705 |
[3] | 0.3188 | 0.5186 | ||||
[4] | 0.3091 | 0.3160 | 0.3528 | 0.4952 | 0.5138 | 0.5684 |
The published data on the stiffness elastic constants of binary group-III nitrides are collected in Table 2. At the moment, there is no reliable information on the elastic constants of ternary and quaternary nitrides. Therefore, the linear approximation is normally used in to estimate the elastic constants. The most reliable stiffness constants and the respective Poisson coefficient ν are given in Table 3.
Cij (GPa) | Ref. | AlN | GaN | InN | |||
exp. | calc. | exp. | calc. | exp. | calc. | ||
C11 | [2] | 345 | 396 | 374 | 367 | 190 | 223 |
[4] | 345, 411 | 398 | 391 | 396 | 271 | ||
[5] | 345, 411 | 398 | 365, 377, 390 | 350 | |||
C12 | [2] | 125 | 137 | 106 | 135 | 104 | 115 |
[4] | 125, 149 | 140 | 143 | 144 | 124 | ||
[5] | 125, 149 | 142 | 135, 160, 135 | 140 | |||
C13 | [2] | 120 | 108 | 70 | 103 | 121 | 92 |
[1] | 120 | 114 | 94 | ||||
[4] | 120, 99 | 127 | 108 | 100 | 94 | ||
[5] | 120, 99 | 112 | 114, 106 | 104 | |||
C33 | [2] | 395 | 373 | 379 | 405 | 182 | 224 |
[1] | 395 | 381 | 200 | ||||
[4] | 395, 389 | 382 | 399 | 392 | 200 | ||
[5] | 395, 389 | 383 | 381, 398 | 376 | |||
C44 | [2] | 118 | 116 | 101 | 95 | 10 | 48 |
[4] | 118, 125 | 96 | 103 | 91 | 46 | ||
[5] | 118, 125 | 127 | 109, 81, 105 | 101 |
AlN | GaN | InN | |
C11 (GPa) | 395 | 375 | 225 |
C12 (GPa) | 140 | 140 | 110 |
C13 (GPa) | 115 | 105 | 95 |
C33 (GPa) | 385 | 395 | 200 |
C44 (GPa) | 120 | 100 | 45 |
ν=C13/(C13+C33) | 0.23 | 0.21 | 0.32 |
Piezoelectric Tensor, Spontaneous Polarization, and Dielectric Constant
e33 | e31 | e15 | e14 | |
GaN (electromechanical coefficients) | 1.0 | |||
GaN (mobility) | 0.44 | 0.375 | ||
GaN (from optical phonons) | 0.65 | 0.56 | ||
GaN (ab initio) | 0.73 | |||
InN (from optical phonons) | 0.43 | 0.37 | ||
InN (ab initio) | 0.97 | |||
AlN (surface acoustic waves) | 1.55 | |||
AlN (ab initio) | 1.46 |
AlN | GaN | InN | |
Spontaneous polarization Pzs (C/m2) | |||
Piezoelectric tensor e33 (C/m2) | 1.55 | 0.65 | 0.43 |
Piezoelectric tensor e31 (C/m2) | |||
Piezoelectric tensor e15 (C/m2) | |||
Dielectric constant ε33 | 8.5 | 8.9 | 15.3 |
The general approximation of the bandgap of a multi-component nitride alloy InxAlyGa1-x-yN as a function of composition is
![]() | , (3) |
AlN | GaN | InN | |
Bandgap EG at T=0 (eV) | 6.25 | 3.51 | 0.69 |
Varshni parameter a (meV/K) | 1.799 | 0.909 | 0.404 |
Varshni parameter b (K) | 1462 | 830 | 454 |
Crystal field splitting (eV) | 22.3 | 37.3 | |
Spin-orbital splitting (eV) | 11.1 | 11.1 | 11.1 |
InGaN bowing parameter (eV) | 1.2 | ||
AlGaN bowing parameter (eV) | 1.0 | ||
AlInN bowing parameter (eV) | 4.5 |
AlN | GaN | InN | ||||
⊥ | || | ⊥ | || | ⊥ | || | |
mn | 0.25 | 0.25 | 0.2 | 0.2 | 0.1 | 0.1 |
mlh | 1.95 | 0.25 | 1.1 | 0.15 | 1.35 | 0.1 |
mhh | 1.95 | 2.58 | 1.1 | 1.65 | 1.35 | 1.45 |
mso | 0.23 | 1.93 | 0.15 | 1.1 | 0.09 | 1.54 |
Material | E0 (eV) | A1 | Γ1 (eV) | E1 (eV) | ε∞ | A0 | Γ0 (eV) | |
AlN | ordinary | 6.05 | 1.4 | 0.8 | 8.05 | 2.8 | 2.6 | 0.55 |
extraordinary | 1.6 | |||||||
InN | ordinary | 0.7 | 1.6 | 1.2 | 5.39 | 5.7 | 2.5 | 0.85 |
extraordinary | 2.0 | 0.85 | 5.6 | 3.3 | 1.35 | |||
GaN | ordinary | 3.6 | 1.1 | 0.9 | 7 | 4.1 | 1.2 | 1.1 |
extraordinary | 1.25 |
Material | E0 (eV) | A1 | Γ1 (eV) | E1 (eV) | ε∞ | A0 | Γ0 (eV) | |
Al2O3 | ordinary | 0.00 | 2.075 | 0.00 | 13.3 | 1.00 | 0.00 | 0.00 |
extraordinary | 2.045 | |||||||
6H-SiC | ordinary | 4.80 | 5.50 | 1.10 | 7.10 | 1.00 | 0.00 | 0.40 |
extraordinary | 4.00 | 2.80 | 2.7 | |||||
4H-SiC | ordinary | 5.40 | 5.30 | 1.10 | 7.30 | 1.00 | 1.10 | 0.40 |
extraordinary | 1.00 | 7.00 | 5.70 | 7.50 | 0.95 |
References
[1] I. Akasaki, H. Amano, “Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters”, Jpn.J.Appl.Phys. 36, Pt.1 (1997) 5393.
[2] O. Ambacher, “Growth and applications of Group III-nitrides”, J. Phys. D 31 (1998) 2653.
[3] M. Leszcynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, S. Porowski, T.D. Moustakas, “Thermal expansion of gallium nitride”, J.Appl.Phys. 76 (1994) 4909.
[4] M. van Schilfgaarde, A. Sher, A.-B. Chen, “Theory of AlN, GaN, InN and their alloys”, J.Cryst.Growth 178 (1997) 8.
[5] K. Shimada, T. Sota, K. Suzuki, “First-principles study on electronic and elastic properties of BN, AlN, and GaN”, J.Appl.Phys. 84 (1998) 4951.
[6] www.iiiv.cornell.edu/
[7] J.A. Garrido, J.L. Sánchez-Rojas, A. Jimnénez, E. Muñoz, F. Omnes, P. Gibart, “Polarization fields determination in AlGaN/GaN heterostructure field-effect transistors from charge control analysis”, App.Phys.Lett. 75 (1999) 2407.
[8] D. Cherns, J. Barnard, F.A. Ponce, “Measurement of the piezoelectric field across strained InGaN/GhaN layers by electron holography”, Sol.St.Commun. 111 (1999) 281.
[9] V.W.L. Chin, T.L. Tansley, T. Osotchan, “Electron mobilities in gallium, indium, and aluminum nitrides”, J.Appl.Phys. 75 (1994) 7365.
[10] S.N. Mohammad, H. Morkoc, “Progress and prospects of group-III nitride semiconductors”, Prog. Quant. Electron. 20 (1996) 361.
[11] V.Fiorentini, F.Bernardini, and O.Ambacher, “Evidence for nonlinear polarization in III-V nitride alloy heterostructures”, Appl.Phys.Lett. 80 (2002) 1204.
[12] Eds. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, “Properties of advanced semiconductor materials. GaN, AlN, InN, BN, SiC, SiGe”, Wiley-Interscience publications, J. Wiley & Sons, Inc., NY, 2001.
[13] I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors”, J. Appl. Phys. 94, 3675 (2003).
[14] J. Wu and W. Walukiewicz, “Band gaps of InN and group III nitride alloys”, Superlattices and Microstructures 34, 63 (2003).